
Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR

Mbuel	Capstone	LabVIEW	Automated	Test	Refactor

Morris	E.	Buel



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 2

Table	of	Contents



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 3

Summary

This	project	dealt	with	improving	the	LabVIEW	based	test	system	that	was	deployed	to

help	with	assisted	manual	test.	The	program	communicates	to	the	device	under	test,	and

automatically	captures	readings	from	bench	top	equipment	and	the	device	under	test.	The

production	floor	was	not	satisfied	with	the	reliability	and	from	the	prior	projectmany	of	the

problems	in	the	software	were	not	being	captured	through	the	companies	bug	tracking	system.

They	were	just	working	around	the	broken	system	by	testing	boards	with	manual	test.	After	doing

a	code	review	it	was	revealed	the	prior	project		code-base	was	literally	spaghetti	code.	(This	is	the

nature	of	an	unplanned	LabVIEW	project)	Prior	to	project	completion	it	took	about	a	month	just

to	get	the	existing	system	stable	where	the	production	floor	felt	more	comfortable	using	it.	To

address	these	issues	and	help	increase	productivity	in	the	department	the	code	was	refactored	to

make	it	more	maintainable,	extensible	and	reliable.

The	new	system	was	designed	from	the	ground	up	with	a	software	development	plan.	The

This	has	helped	create	a	stable	code-base.	There	is	now	unit	testing	implemented	so	bug	fixes

cause	no	new	bugs.	The	completed	project	now	has	an	easy	way	to	add	new	products	as	the

system	is	now	built	to	be	modular	and	extensible	from	the	ground	up.	When	adding	most	new

products	to	the	system,	it	can	be	completed	in	less	than	a	day	with	no	changes	to	the	code-base.	

The	success	of	this	refactor	project	has	dramatically	increased	productivity	in	the

production	department,	as	the	existing	tests	are	completed	faster	andmore	reliably.	The	ability	to

add	tests	quicker	has	also	had	a	measurable	affect	on	productivity.	The	test	department	met	their

productivity	goals	over	a	three	month	period	for	the	first	time	in	measured	history.	The	more

robust	construction	also	makes	it	easier	to	adapt	when	needed.	If	a	product	does	require	a	test

case	that	does	not	currently	exist,	it	can	be	added	within	about	a	day	or	two	including	unit	and

product	testing.	After	completion	that	addition	can	be	used	with	all	future	tests.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 4

The	success	of	this	refactor	project	has	dramatically	increased	productivity	in	the

production	department,	as	the	existing	tests	are	completed	faster	andmore	reliably.	The	ability	to

add	tests	quicker	has	also	had	a	measurable	affect	on	productivity.	The	test	department	met	their

productivity	goals	over	a	three	month	period	for	the	first	time	in	measured	history.	The	more

robust	construction	also	makes	it	easier	to	adapt	when	needed.	If	a	product	does	require	a	test

case	that	does	not	currently	exist,	it	can	be	added	within	about	a	day	or	two	including	unit	and

product	testing.	After	completion	that	addition	can	be	used	with	all	future	tests.

The	refactored	LabVIEW	implementation	had	a	few	problems	that	came	up,	dealt	with

during	the	project.	After	the	second	sprint	work	was	completed	on	the	most	problematic	VI	in	the

code	base	it	was	released	to	Production	while	I	continued	working	on	the	next	VI	to	refactor.

During	this	time	there	were	a	few	high	severity	bugs	caught	that	did	not	have	unit	tests	to	catch

them.	To	ensure	that	production	was	not	line	down	a	solution	was	come	up	with	to	deal	with	the

transition	slightly	differently.	The	company	decided	that	to	avoid	stoppages	to	production	we

should	switch	to	a	parallel	deployment.	That	until	the	new	product	met	the	stability	requirements,

they	would	still	have	the	old	application	available	for	use.	This	was	set	up	for	them,	and	work

continued	on	the	last	sprint	with	the	added	coverage	of	fixing	those	high	severity	bugs.	After

release	there	were	still	a	few	bugs	to	burn	down,	and	unit	tests	added	to	catch	those	problems	–

until	the	product	got	to	less	than	one	bug	reported	on	average	per	week.	The	switch	over	to	the

new	system	at	that	point	was	completed,	and	the	old	system	removed	from	the	network.

Review	of	Other	Work	

To	meet	production	demands,	it	is	important	to	test	boards	in	a	timely	manner.	The

current	project	did	not	and	this	was	improved	to	improve	the	production	process.	The	current

application	is	now	more	useful	in	moving	us	toward	improving	this	metric	and	is	no	longer	laden

with	project	problems	that	need	to	be	overcome.	To	overcome	the	problem	the	project	entered	a

refactor	project	which	helped	refocus	the	prior	project	to	meet	the	original	goals	of	that	were

missed	in	the	prior	project.	In	their	video	on	refactoring	LabVIEW	code,	LabVIEW	advantage

(2016)	stated;	“the	refactor	does	the	same	thing	in	a	much	more	savvy	way.”	The	goal	of	the

refactor	should	not	be	to	rewrite	unless	necessary,	it	should	be	to	do	the	same	thing	in	a	way	that

is	easier	to	read	and	takes	up	less	code	space	on	screen.	It	will	provide	the	same	functionality	in

less	screen	space.	This	helped	drive	the	project	to	meeting	the	goals	of	being	more	maintainable,

reliable	and	extensible.	(LabVIEW	Advantage,	2016)	

The	application’s	no	longer	a	complex	web	of	interleaved	code	screens	even	with	over	450

VI	connected	to	the	project.	While	this	was	daunting,	through	a	process	of	decomposition,

complex	items	were	broken	down	into	smaller	and	more	workable	pieces	of	code.	This	is	true

also	with	the	LabVIEW	development	environment.	In	their	brief	at	dev	days	in	2011	National

Instruments	presented	a	document	on	dealing	with	inheriting	and	maintaining	LabVIEW	code.

There	were	some	great	takeaways	in	this	lecture,	including	the	goal	of	any	refactor	should	be;

“more	readable	and	maintainable	so	that	cost	does	not	increase	over	time.”	This	metric	was

tracked	in	the	outcome,	by	keeping	track	of	the	number	of	reported	bugs	per	week	in	the	bug

reporting	system	the	company	uses.	They	also	discuss	an	important	distinction	that	was		made

during	the	first	sprint.	Sometimes	the	existing	code-base	was	too	far	from	the	desired	result.

When	the	existing	VI	did	not	meet	the	required	functionality,	the	developers	decided	to;	“change

the	internal	structure	of	a	VI	to	make	it	more	readable	and	maintainable.”	This	of	course	required

a	system	to	make	sure	the	rewritten	and	refactored	VI	meet	the	required	functionality.	(National

Instruments,	2011)



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 5

To	meet	production	demands,	it	is	important	to	test	boards	in	a	timely	manner.	The

current	project	did	not	and	this	was	improved	to	improve	the	production	process.	The	current

application	is	now	more	useful	in	moving	us	toward	improving	this	metric	and	is	no	longer	laden

with	project	problems	that	need	to	be	overcome.	To	overcome	the	problem	the	project	entered	a

refactor	project	which	helped	refocus	the	prior	project	to	meet	the	original	goals	of	that	were

missed	in	the	prior	project.	In	their	video	on	refactoring	LabVIEW	code,	LabVIEW	advantage

(2016)	stated;	“the	refactor	does	the	same	thing	in	a	much	more	savvy	way.”	The	goal	of	the

refactor	should	not	be	to	rewrite	unless	necessary,	it	should	be	to	do	the	same	thing	in	a	way	that

is	easier	to	read	and	takes	up	less	code	space	on	screen.	It	will	provide	the	same	functionality	in

less	screen	space.	This	helped	drive	the	project	to	meeting	the	goals	of	being	more	maintainable,

reliable	and	extensible.	(LabVIEW	Advantage,	2016)	

The	application’s	no	longer	a	complex	web	of	interleaved	code	screens	even	with	over	450

VI	connected	to	the	project.	While	this	was	daunting,	through	a	process	of	decomposition,

complex	items	were	broken	down	into	smaller	and	more	workable	pieces	of	code.	This	is	true

also	with	the	LabVIEW	development	environment.	In	their	brief	at	dev	days	in	2011	National

Instruments	presented	a	document	on	dealing	with	inheriting	and	maintaining	LabVIEW	code.

There	were	some	great	takeaways	in	this	lecture,	including	the	goal	of	any	refactor	should	be;

“more	readable	and	maintainable	so	that	cost	does	not	increase	over	time.”	This	metric	was

tracked	in	the	outcome,	by	keeping	track	of	the	number	of	reported	bugs	per	week	in	the	bug

reporting	system	the	company	uses.	They	also	discuss	an	important	distinction	that	was		made

during	the	first	sprint.	Sometimes	the	existing	code-base	was	too	far	from	the	desired	result.

When	the	existing	VI	did	not	meet	the	required	functionality,	the	developers	decided	to;	“change

the	internal	structure	of	a	VI	to	make	it	more	readable	and	maintainable.”	This	of	course	required

a	system	to	make	sure	the	rewritten	and	refactored	VI	meet	the	required	functionality.	(National

Instruments,	2011)

In	order	to	make	the	refactor	successful	it	was	important	to	understand	why	projects	can

fail,	or	why	they	are	released	and	then	fail	to	meet	the	original	requirements.	According	to	the

article	put	out	by	ALE	System	Integration	(2008)	there	are	four	reasons	why	bad	code	happens.

Those	reasons;	“1.	Novice	programmer	2.	Rushed	Development	3.	Prototype	became	final

application	4.	Experimenting	of	new	algorithms	or	design	patterns.”	(2008)	any	of	these	can

cause	a	project	deployment	to	fail,	this	project	had	all	four	of	them	as	the	root	cause.	It	was

created	by	a	new	developer,	it’s	development	was	rushed,	the	prototype	shown	off	to	management

became	the	final	product	and	there	was	a	lot	of	experimentation	in	the	code-base	with	new

algorithms	and	design	patterns.	This	could	have	been	an	overwhelming	burden	to	climb	to	bring

this	project	to	a	maintainable,	reliable	and	extensible	state,	but	through	the	agile	development

process,	by	taking	the	functional	patterns	of	the	software	and	building	on	them,	to	release	code

that	met	the	original	design	specifications.	The	article	also	has	an	excellent	point	on	when	to

rewrite	and	when	to	refactor.	If	the	VI	works	but;	“just	needs	a	feature	added	to	a	VI”(2008)	then

a	refactor	is	appropriate.	If	the	VI;	“does	not	function”(2008)	then	it	should	be	rewritten.	Using

this	criteria	helped	during	the	first	sprint	when	the	schedule	was	laid	out	for	the	rest	of	the

project.	This	method	was	used	while		documenting	the	existing	code,		to	determine	whether	the

VI	met	the	functional	requirements	of	that	VI,	or	did	not	function	as	it	should.	(Terry

Stratoudakis,	PE,	2008)



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 6

In	order	to	make	the	refactor	successful	it	was	important	to	understand	why	projects	can

fail,	or	why	they	are	released	and	then	fail	to	meet	the	original	requirements.	According	to	the

article	put	out	by	ALE	System	Integration	(2008)	there	are	four	reasons	why	bad	code	happens.

Those	reasons;	“1.	Novice	programmer	2.	Rushed	Development	3.	Prototype	became	final

application	4.	Experimenting	of	new	algorithms	or	design	patterns.”	(2008)	any	of	these	can

cause	a	project	deployment	to	fail,	this	project	had	all	four	of	them	as	the	root	cause.	It	was

created	by	a	new	developer,	it’s	development	was	rushed,	the	prototype	shown	off	to	management

became	the	final	product	and	there	was	a	lot	of	experimentation	in	the	code-base	with	new

algorithms	and	design	patterns.	This	could	have	been	an	overwhelming	burden	to	climb	to	bring

this	project	to	a	maintainable,	reliable	and	extensible	state,	but	through	the	agile	development

process,	by	taking	the	functional	patterns	of	the	software	and	building	on	them,	to	release	code

that	met	the	original	design	specifications.	The	article	also	has	an	excellent	point	on	when	to

rewrite	and	when	to	refactor.	If	the	VI	works	but;	“just	needs	a	feature	added	to	a	VI”(2008)	then

a	refactor	is	appropriate.	If	the	VI;	“does	not	function”(2008)	then	it	should	be	rewritten.	Using

this	criteria	helped	during	the	first	sprint	when	the	schedule	was	laid	out	for	the	rest	of	the

project.	This	method	was	used	while		documenting	the	existing	code,		to	determine	whether	the

VI	met	the	functional	requirements	of	that	VI,	or	did	not	function	as	it	should.	(Terry

Stratoudakis,	PE,	2008)

To	help	ensure	this	project	was	a	success	where	the	first	project	failed	was	to	properly

implement	test	driven	development.	To	really	get	to	the	heart	of	what	we	aimed	for	with	test

driven	development,	Roy	Osherove	through	His	book	the	art	of	unit	testing	(2009)	covers	this

topic	in	great	detail.	The	inclusion	of	unit	testing	alone	did	not	mean	this	project	would	succeed.

If	the	tests	were	poorly	designed,	implemented	or	notated	they	also	could	have	created	code	that

is	not	reliable,	not	maintainable	and	not	extensible.	According	to	Osherove	when	discussing

inheriting	code	with	poorly	written	tests	(2009);	“the	tests	were	so	brittle	that	any	little	change	in

our	code	broke	them!”.	To	accomplish	this	it’s	important	that	the	unit	tests	were	also	documented,

and	kept	simple.	Just	as	with	any	other	language,	the	entire	function	(VI)	should	be	visible	on

one	screen	without	any	scrolling.	They	should	have	clear	variable	names,	that	make	it	clear	what

is	being	done,	which	also	makes	it	clear	what	is	being	tested.	Test	driven	development	as	with

standard	development,	should	aim	to	be	reliable,	extensible	and	maintainable.	Every	unit	test	was

written	with	this	idea	and	laid	out	to	be	reusable	elsewhere,	Osherove	(2009);	“If	you	don’t

devise	ways	to	reuse	parts	of	your	tests….	If	you	don’t	you’ll	end	up	with	test	code	that’s	either

not	maintainable	or	hard	to	understand.”	In	order	to	accomplish	this	goal,	we	made	sure	that	tests

are	as	automated	as	possible	within	the	IDE.	The	goal	of	this	project	of	a	more	maintainable	base,

was	accomplished	through	this	process.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 7

To	help	ensure	this	project	was	a	success	where	the	first	project	failed	was	to	properly

implement	test	driven	development.	To	really	get	to	the	heart	of	what	we	aimed	for	with	test

driven	development,	Roy	Osherove	through	His	book	the	art	of	unit	testing	(2009)	covers	this

topic	in	great	detail.	The	inclusion	of	unit	testing	alone	did	not	mean	this	project	would	succeed.

If	the	tests	were	poorly	designed,	implemented	or	notated	they	also	could	have	created	code	that

is	not	reliable,	not	maintainable	and	not	extensible.	According	to	Osherove	when	discussing

inheriting	code	with	poorly	written	tests	(2009);	“the	tests	were	so	brittle	that	any	little	change	in

our	code	broke	them!”.	To	accomplish	this	it’s	important	that	the	unit	tests	were	also	documented,

and	kept	simple.	Just	as	with	any	other	language,	the	entire	function	(VI)	should	be	visible	on

one	screen	without	any	scrolling.	They	should	have	clear	variable	names,	that	make	it	clear	what

is	being	done,	which	also	makes	it	clear	what	is	being	tested.	Test	driven	development	as	with

standard	development,	should	aim	to	be	reliable,	extensible	and	maintainable.	Every	unit	test	was

written	with	this	idea	and	laid	out	to	be	reusable	elsewhere,	Osherove	(2009);	“If	you	don’t

devise	ways	to	reuse	parts	of	your	tests….	If	you	don’t	you’ll	end	up	with	test	code	that’s	either

not	maintainable	or	hard	to	understand.”	In	order	to	accomplish	this	goal,	we	made	sure	that	tests

are	as	automated	as	possible	within	the	IDE.	The	goal	of	this	project	of	a	more	maintainable	base,

was	accomplished	through	this	process.

To	make	sure	we	used	the	JKI	unit	testing	tools	correctly,	the	team	decided	to	watch	a

training	video	online.	Unit	testing	requires	code	blocks	to	be	decomposed	into	functional	units	of

work.	This	was	done	during	the	second	sprint	as	the	first	release,	caused	problems	in	production.

Delivery	of	code,	LabVIEW	Architects	Forum	(2015)		“is	not	just	writing	some	code,	there	has	to

be	documentation,	testing,	buiding,	functional	testing,	reviewed	and	approved	by	internal	and

external	customers.”	To	make	sure	future	releases	did	not	cause	production	to	go	line	down

during	the	project,	the	release	was	shifted	to	parallel	deployment.	This	left	the	old	system	on	the

network	while	the	new	system	was	being	worked	on.	After	the	new	system	met	all	of	the	internal

customer’s	goals,	the	project	was	considered	complete.

During	the	refactor	of	one	of	the	central	VI	it	was	determined	that	data	abstraction	was

necessary.	To	help	determine	the	best	way	to	accomplish	this,	research	was	done	on	using	the

class	objects	inside	of	LabVIEW.	It	was	determined	that	a	class	object	provided	a	better	way	to

pass	all	of	the	data	related	to	a	test	between	VI,	instead	of	having	an	individual	wire	for	each	data

point.	The	class	object	was	constructed	representing	the	test	data	as	it	passed	through	the	system.

Similar	to	other	object	oriented	programming	languages,	classes	can	have	abstract,	private	and

public	member	variables.	Since	with	private	variables	Tomi	P.	Maila	(2007)	“only	methods	that

belong	to	the	class	can	access	this	data”	it	was	determined	that	all	the	variables	within	this	holder

class	would	be	declared	as	public	variables.	



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 8

During	the	refactor	of	one	of	the	central	VI	it	was	determined	that	data	abstraction	was

necessary.	To	help	determine	the	best	way	to	accomplish	this,	research	was	done	on	using	the

class	objects	inside	of	LabVIEW.	It	was	determined	that	a	class	object	provided	a	better	way	to

pass	all	of	the	data	related	to	a	test	between	VI,	instead	of	having	an	individual	wire	for	each	data

point.	The	class	object	was	constructed	representing	the	test	data	as	it	passed	through	the	system.

Similar	to	other	object	oriented	programming	languages,	classes	can	have	abstract,	private	and

public	member	variables.	Since	with	private	variables	Tomi	P.	Maila	(2007)	“only	methods	that

belong	to	the	class	can	access	this	data”	it	was	determined	that	all	the	variables	within	this	holder

class	would	be	declared	as	public	variables.	

It	was	also	determined	during	the	project	that	the	front	panel	(the	main	user	interface)

needed	to	be	rewritten	as	the	existing	form	did	not	meet	the	project	requirements	and	was	causing

issues	on	the	production	floor.	While	researching	solutions	it	was	revealed	the	best	replacement

was	a	third	party	drop	in	state	machine	created	by	JKI.	This	“JKI	state	machine”	is	event	driven

instead	of	queue	driven,	this	means	that	no	matter	what	event	was	processed	before,	you	can

process	every	event	next.	The	prior	state	machine	could	only	process	certain	events	in	the	queue

structure.	Ideally	when	a	JKI	(2008)	“button	is	pressed	it’ll	actually	execute	those	two	states	in

sequence.”	which	makes	every	state	in	the	program	more	responsive,	along	with	increasing

maintainability,	stability	and	reliability.

Changes	to	the	Project	Environment	

The	current	environment	still	uses	LabVIEW	which	is	a	GUI	driven	IDE.	This	has	an

upside	of	allowing	those	who	have	little	to	no	programming	experience	to	get	the	prior	project	up

and	running	quickly.	The	downside	was	it	allowed	those	with	little	to	no	programming	experience

to	get	the	prior	project	up	and	running	quickly.	The	prior	project	had	no	focus	on	proper

programming	techniques	it	allowed	the	project	to	quickly	and	literally	turn	into	spaghetti	code.	

This	project	environment	made	it	easy	to	implement	refactoring	on	a	class	by	class	basis.

The	nature	of	LabVIEW	made	each	VI	(or	class	in	traditional	programming)	polymorphic	by

nature.	Each	VI	has	to	function	on	it’s	own,	if	it	can’t	nothing	else	will	work.	This	is	where	tools

were	searched	for	to	replace	what	was	built	inefficiently	and	where	necessary	replaced	with	off

the	shelf	solution(s).	To	do	this	we	used	the	VI	package	manager	which	is	a	free	tool	maintained

by	JKI(2015)	software.	This	tool	allows	you	to	easily	add	third	party	VI(s)	(classes)	that

accomplish	goals	that	were	commonly	required,	that	the	NI	tool	chain	doesn’t	do,	or	doesn’t	do	as

well.	



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 9

The	current	environment	still	uses	LabVIEW	which	is	a	GUI	driven	IDE.	This	has	an

upside	of	allowing	those	who	have	little	to	no	programming	experience	to	get	the	prior	project	up

and	running	quickly.	The	downside	was	it	allowed	those	with	little	to	no	programming	experience

to	get	the	prior	project	up	and	running	quickly.	The	prior	project	had	no	focus	on	proper

programming	techniques	it	allowed	the	project	to	quickly	and	literally	turn	into	spaghetti	code.	

This	project	environment	made	it	easy	to	implement	refactoring	on	a	class	by	class	basis.

The	nature	of	LabVIEW	made	each	VI	(or	class	in	traditional	programming)	polymorphic	by

nature.	Each	VI	has	to	function	on	it’s	own,	if	it	can’t	nothing	else	will	work.	This	is	where	tools

were	searched	for	to	replace	what	was	built	inefficiently	and	where	necessary	replaced	with	off

the	shelf	solution(s).	To	do	this	we	used	the	VI	package	manager	which	is	a	free	tool	maintained

by	JKI(2015)	software.	This	tool	allows	you	to	easily	add	third	party	VI(s)	(classes)	that

accomplish	goals	that	were	commonly	required,	that	the	NI	tool	chain	doesn’t	do,	or	doesn’t	do	as

well.	

The	development	environment	was	improved	through	the	following	things:

1)	Implemented	unit	testing.	JKI	has	a	unit	testing	package	that	can	be	installed	from	the	package

manager.	To	start	with,	unit	testing	was	only	completed	on	refactored	or	added	packages.

2)	Ensured	the	project	was	worked	on	from	the	local	drive,	and	was	executable	and	able	to

compile	from	that	local	drive.	The	prior	project	was	run	and	compiled	from	diverse	network

locations	creating	dependency	problems	when	build	or	run	attempts	were	made.

3)	Made	sure	the	project	is	properly	inserted	into	subversion	nightly.	The	prior	project	was	not	in

subversion,	so	if	someone	else	was	eventually	added	to	the	project	there	would	have	been

problems.	This	also	helped	during	development,	when	a	mistake	was	made	we	could	rollback	to	a

working	release.

4)	The	production	environment	now	works	from	the	companies	internal	auto	updater.	Previously

they	had	to	manually	copy	updates	to	each	employee’s	production	machine,	taking	more	of	their

time	away	from	testing	and	delivering	product.

These	changes	improved	the	development	environment	which	made	it	easier	to	implement

the	improvements.	

Methodology

This	project	used	the	agile	methodology	with	sprints	to	focus	on	a	VI	then	release	the

code	to	production.	This	allowed	for	test	driven	iterative	deployment	that	was	also	implemented

by	adding	unit	testing	to	refactored	VI.	At	the	beginning	of	a	sprint	it	was	decided	what	would	be

worked	on	by	the	weight	of	it’s	difficulty,	assuming	that	one	man	hour	can	get	a	difficulty	total	of

40	done	per	week.	This	difficulty	was	determined	by	the	development	team,	voting	on	the	cards.

A	sprint	included	the	specified	labor	on	those	cards,	to	finish	the	work	required	and	at	the	end	of

that	sprint	a	usable	product	was	ready	for	the	production	floor	to	use	-	that	functionally	works	the

same	but	is	now	more	reliable.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 10

This	project	used	the	agile	methodology	with	sprints	to	focus	on	a	VI	then	release	the

code	to	production.	This	allowed	for	test	driven	iterative	deployment	that	was	also	implemented

by	adding	unit	testing	to	refactored	VI.	At	the	beginning	of	a	sprint	it	was	decided	what	would	be

worked	on	by	the	weight	of	it’s	difficulty,	assuming	that	one	man	hour	can	get	a	difficulty	total	of

40	done	per	week.	This	difficulty	was	determined	by	the	development	team,	voting	on	the	cards.

A	sprint	included	the	specified	labor	on	those	cards,	to	finish	the	work	required	and	at	the	end	of

that	sprint	a	usable	product	was	ready	for	the	production	floor	to	use	-	that	functionally	works	the

same	but	is	now	more	reliable.

A	second	advantage	of	the	agile	methodology	was	the	quicker	feedback	from	the	internal

customers	on	the	production	floor.	After	every	deployment		we	were	be	able	to	use	the	bug

tracking	system	to	make	sure	bugs	are	actually	decreasing	with	each	iterative	release.	The	first

release	had	more	problems	than	anticipated	causing	a	shift	in	the	release	structure	from

transparent	to	parallel	with	cut	over.

Sprint	1:	Moved	the	project	structure	to	the	local	working	drive,	uploaded	the	current	version	to

source	control,	then	installed	the	unit	test	platform	for	LabVIEW.	(JKI	Unit	Test)	Reviewed	the

bug	list	to	focus	on	the	most	problematic	section(s)	of	code	to	refactor	first.

Sprint	2:	After	documenting	the	VI	with	the	most	bugs,	work	began	on	the	refactor		and	rewrite

(where	necessary)	of	that	the		VI	that	was	voted	to	be	in	sprint	2.	The	end	result	are	VI	that	meet

the		required	results	with	greater	reliability,	maintainability	and	extensibility.

Sprint	3:	This	was	the	most	difficult	sprint,	as	there	was	also	priority	one	bugs	that	had	to

be	completed	during	this	sprint.	It	also	did	require	six	more	VI	to	be	refactored	and	rewritten.

This	sprint	should	have	been	broken	down	into	another	sprint,	as	the	amount	of	labor	was	greater

than	the	time	available.	was		Through	the	plan	however,	this	sprint	did	build	upon	what	was

learned	during	sprints	1	and	2,	with	unit	testing	and	refactoring	and	rewriting	where	necessary.

The	second,	third	and	fourth	refactor	or	rewrite	were	faster	than	the	first.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 11

Project	Goals	and	Objectives

Goal Supporting	objectives Deliverables	enabling	the
project	objectives Met/Unmet

1

Review
existing
code	to
docume
nt	what
is	being
done	–
get
codebas
e	in
SVN

1.a.	Document	existing
code-base

1.a.i.	Reviewed	bugs	to
determine	which	Sub	VI
should	be	focused	on	first

Met

1.a.ii.	Documented
functionality	and	what	is
trying	to	be	accomplished	in
that	VI.

Met

1.a.iii.	Created	the	schedule
for	phase	2	depending	on	the
complexity	and	amount	of
bugs	in	each	VI

Met

1.b.	Upload	current
code-base	to	subversion

1.b.i.	Copied	the	existing
code-base	to	the	local
working	directory,	make	sure
it	runs	and	compiles	without
errors.

Met

1.b.ii.	Uploaded	codebase	to
subversion. Met

2

Refactor
selected
VI,	Unit
Test
those	VI
release
new
code-
base	to
Producti
on	at
end	of
sprint

2.a.	Begin	refactor
work	on	the	VI	selected
in	Phase	1.

2.a.i.	Work	schedule	of	what
work	needs	to	be	done Met

2.a.ii.	Verified	refactored	VI
that	functionally	work	the
same	way.

Met

2.b.	Unit	test	the

rewritten,	and
refactored	VI

2.b.i.	Built	VI	to	test

refactored	and	rewritten	VI.

Met



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 12

2.b.	Unit	test	the

rewritten,	and
refactored	VI

2.b.i.	Built	VI	to	test

refactored	and	rewritten	VI.

2.b.ii.	Delivered	tested	code	to
Production,	get	their
feedback.

Met

2.c		Build	schedule	for
last	sprint

2.c.i	Working	schedule	for	the
last	sprint	to	deliver	the	final
product.

Met

3

Impleme
nt
extensibl
e	code
base

3.a	work	through
schedule	created	in	last
sprint	

3.a.i	Refactored	VI	case
structure,	where	modularity
will	be	inserted.	(rewritten
VI)

Met

3.a.ii	Unit	Tests	on	refactored
and	rewritten	VI	–	all	VI	pass. Met

3.b	ability	to	add	tests
from	outside	without
any	code	changes.

3.b.i	Ability	to	create	a	new
test	from	outside	the	IDE Met

3.b.ii	Ability	to	tun	through
simple	test	to	verify	that	a	test
can	be	added	without
touching	the	code-base.

Met

The	goal	of	this	project	was	to	refactor	and/or	rewrite	the	existing	test	environment	in

LabVIEW	to	make	it	more	maintainable,	reliable	and	extensible.	To	accomplish	this	goal,	the

goals	were	decomposed	into	smaller	units	of	work,	and	accomplished	by	working	through	the

project	timeline	and	adapting	it	where	necessary.	This	started	in	the	first	sprint	by	gathering	up

cards	representing	all	of	the	existing	bugs	in	the	project.	The	scrum	team	then	scored	each	one

using	a	Fibonacci	sequence	number,	where	21	represents	the	highest	difficulty,	and	1	represents

the	lowest	difficulty.	The	reporting	customer	reported	the	severity	on	a	scale	of	1	to	4,	with	1

being	the	most	sever,	and	4	being	the	least	severe.	After	completing	this	the	team	had	the	cards

sorted	by	priority	and	difficulty.	The	next	deliverable	was	documenting	the	functionality	of	the

highest	priority	card	from	the	prior	objective.	This	required	a	code	review	to	meet	and	discuss	the

required	functionality	for	that	VI,	and	determine	if	the	existing	code	met	that	requirement.	The

deliverable	from	this	was	documentation	on	the	functionality	for	the	proposed	VI	to	work	on.

The	last	deliverable	for	sprint	1.a	was	to	create	the	list	of	VI	that	will	be	worked	on	for	sprint	2,

with	the	appropriate	documentation	coupled	to	that	requirement.	To	make	sure	that	work	went

without	a	hitch,	the	last	objective	for	sprint	1	was	to	copy	all	the	code	to	the	local	drive	and

upload	it	to	the	SVN	server.	This	was	done	by	first	copying	the	code-base	to	the	local	drive,	then

making	sure	it	compiled	and	ran.	Once	that	was	addressed,	the	code-base	was	uploaded	to	the

SVN	server	to	make	sure	there	was	a	roll	back	available	if	something	went	wrong	with	the

project.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 13

The	goal	of	this	project	was	to	refactor	and/or	rewrite	the	existing	test	environment	in

LabVIEW	to	make	it	more	maintainable,	reliable	and	extensible.	To	accomplish	this	goal,	the

goals	were	decomposed	into	smaller	units	of	work,	and	accomplished	by	working	through	the

project	timeline	and	adapting	it	where	necessary.	This	started	in	the	first	sprint	by	gathering	up

cards	representing	all	of	the	existing	bugs	in	the	project.	The	scrum	team	then	scored	each	one

using	a	Fibonacci	sequence	number,	where	21	represents	the	highest	difficulty,	and	1	represents

the	lowest	difficulty.	The	reporting	customer	reported	the	severity	on	a	scale	of	1	to	4,	with	1

being	the	most	sever,	and	4	being	the	least	severe.	After	completing	this	the	team	had	the	cards

sorted	by	priority	and	difficulty.	The	next	deliverable	was	documenting	the	functionality	of	the

highest	priority	card	from	the	prior	objective.	This	required	a	code	review	to	meet	and	discuss	the

required	functionality	for	that	VI,	and	determine	if	the	existing	code	met	that	requirement.	The

deliverable	from	this	was	documentation	on	the	functionality	for	the	proposed	VI	to	work	on.

The	last	deliverable	for	sprint	1.a	was	to	create	the	list	of	VI	that	will	be	worked	on	for	sprint	2,

with	the	appropriate	documentation	coupled	to	that	requirement.	To	make	sure	that	work	went

without	a	hitch,	the	last	objective	for	sprint	1	was	to	copy	all	the	code	to	the	local	drive	and

upload	it	to	the	SVN	server.	This	was	done	by	first	copying	the	code-base	to	the	local	drive,	then

making	sure	it	compiled	and	ran.	Once	that	was	addressed,	the	code-base	was	uploaded	to	the

SVN	server	to	make	sure	there	was	a	roll	back	available	if	something	went	wrong	with	the

project.

The	second	sprint	started	the	work	on	the	VI	to	refactor.	It	was	decided	to	focus	primarily

on	one,	and	try	to	do	another	easy	one	if	time	allowed.	The	decided	upon	VI	was	the	base	serial

driver.	The	prior	serial	driver	VI	had	six	different	iterations,	violating	the	rules	for	maintainable,

and	extensible	and	reliable	code.	The	first	thing	the	team	did	was	to	build	a	stand	alone	serial

application	with	LabVIEW	with	unit	testing,	to	determine	what	was	needed	in	the	code.	This

encapsulation	and	polymorphism	led	to	more	reliable	code.	After	it	passed	Unit	Testing,	it	was

implemented	to	replace	all	six	iterations	of	the	prior	serial	driver	with	the	new	serial	application.

This	took	up	most	of	the	time,	the	product	was	compiled,	function	tested	then	delivered	to

production.	After	completing	the	unit	testing	and	delivering	the	product,	the	schedule	was	laid

out	for	the	last	sprint.

During	the	last	sprint,		it	was	revealed	that	the	delivered	product	was	not	working	as

reliably	as	it	needed	to.	It	was	determined	after	a	quick	scrum	to	switch	the	deployment	to	a

parallel	deployment,	keeping	the	old	version	available	until	the	new	version	met	requirements.

Before	starting	the	remainder	of	the	work,	the	high	priority	fly	in	was	completed	and	testing

added	from	what	was	learned	in	Production.	After	it	was	completed	work	continued	on	the

refactor	project.	It	took	the	remainder	of	the	two	weeks	to	finish	the	necessary	work	to	allow

creating	tests	outside	of	the	LabVIEW	development	environment.	The	final	deliverable	was	met,

a	test	was	added	without	touching	the	code-base	at	all.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 14

During	the	last	sprint,		it	was	revealed	that	the	delivered	product	was	not	working	as

reliably	as	it	needed	to.	It	was	determined	after	a	quick	scrum	to	switch	the	deployment	to	a

parallel	deployment,	keeping	the	old	version	available	until	the	new	version	met	requirements.

Before	starting	the	remainder	of	the	work,	the	high	priority	fly	in	was	completed	and	testing

added	from	what	was	learned	in	Production.	After	it	was	completed	work	continued	on	the

refactor	project.	It	took	the	remainder	of	the	two	weeks	to	finish	the	necessary	work	to	allow

creating	tests	outside	of	the	LabVIEW	development	environment.	The	final	deliverable	was	met,

a	test	was	added	without	touching	the	code-base	at	all.

The	project	did	end	up	taking	longer	than	the	projected	schedule	which	will	be	covered	in

the	timeline.	In	order	to	meet	the	requirements	set	up	by	the	parallel	deployment	shift,	it	took	two

more	weeks	to	drive	down	bugs	to	release	the	stable	code-base.	The	reason	for	this	success	was

the	agile	methodology	is	open	to	changes	where	necessary.	It	created	a	flexible	framework

allowing	for	the	necessary	adjustments	to	the	release	and	the	schedule.

Project	Timeline

Milestone	or
deliverable

Planned
Duration	
(hours	or
days)

Actual

Duration

(hours	or

days)

Projected

start	date

Anticipated

end	date

Actual

Start	Date

Actual

end	date

Pre-Sprint	1
meeting	to	sort
bugs	by	severity
and	difficulty

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Move	project	to
local	drive

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Verify	Project
still	runs	from
local	drive	with
no	dependency
errors

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Build	project	from
local	drive,	verify
no	dependency
errors

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Upload	project	to
subversion

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Install	JKI	Unit
Test	platform

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Create	schedule
for	Sprint	2

1	hour 1	hour 3/6/17 3/6/17 3/6/17 3/6/17

Run	through
training	examples
for	successful	unit

testing	in
LabVIEW	with
JKI	(YouTube)

4	days 4	days 3/7/17 3/10/17 3/7/17 3/10/17



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 15

Run	through
training	examples
for	successful	unit

testing	in
LabVIEW	with
JKI	(YouTube)
Start	sprint	2-	start
work	on	first	VI
from	schedule.

2	days 2	days 3/13/17 3/14/17 3/13/17 3/14/17

Run	testing	on	first
VI	and	any	created
Sub	VI

1	day 1	day 3/15/17 3/15/17 3/15/17 3/15/17

Refactor	next	VI
that	can	be	done	in
1	day	of	labor,
with	unit	testing

1	day 1	day 3/16/17 3/16/17 3/16/17 3/16/17

Release
Production	code,
determine	impact

1	day 1	day 3/17/17 3/17/17 3/17/17 3/17/17

Start	sprint	3	–
refactor	next	VI
in	schedule	that
will	drive	toward
modularity.
While
developing,
create	and	run
unit	tests	in
parallel.	

2	days 2	days 3/20/17 3/21/17 3/20/17 3/21/17

Release	code	to
production

1	day 1	day 3/22/17 3/22/17 3/22/17 3/22/17

Determine	if
sprint	2	release	has
any	show	stoppers
that	need	worked
on,	if	not	work	on
next	VI	and	it’s
unit	tests

2	days 2	days 3/23/17 3/24/17 3/23/17 3/24/17

Work	on	high
priority	bugs	from
Sprint	2	(inserted)

1	day 1	day 3/27/17 3/27/17

Review	prior
release	bugs,
release	new
changes	to
Production.	

1	day 1	day 3/26/17 3/26/17 3/28/17 3/28/17

Work	on
remaining	VI	to
implement
modularity	in
parallel	with	unit
testing

3	days 3	days 3/27/17 3/29/17 3/29/17 4/3/17



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 16

Test	modularity	–
release	code	to
production

1	day 1	day 3/30/17 3/30/17 4/4/17 4/4/17

Fourth	sprint:	Bug
burn	down

1	week 1	week 4/5/17 4/12/17

The	first	sprint	started	and	finished	on	schedule	with	no	issues.	The	second	sprint	also

finished	on	schedule,	and	the	new	code	was	released	to	Production	at	the	end	of	the	second	sprint.

During	the	third	sprint	however	a	problem	cropped	up	in	Production	that	did	cause	the	project	to

run	longer	than	anticipated.	It	also	required	changing	the	release	method	from	cut	over	to	parallel.

After	all	the	scheduled	work	was	completed	slightly	later	than	anticipated	it	was	decided	to	do	a

fourth	week	long	sprint,	to	burn	through	the	bugs	in	the	released	code.	After	this	was	completed

the	parallel	deployment	was	made	the	main	deployment.	

Unanticipated	Requirements

During	the	third	sprint	it	was	brought	to	the	team’s	attention	that	there	were	several	high

priority	bugs	keeping	the	team	from	continuing	their	work.	To	deal	with	this	a	quick	scrum	was

held	to	decide	what	to	do.	It	was	decided	to	switch	the	release	to	a	parallel	deployment	until	the

internal	customer	was	satisfied	with	the	performance	of	the	new	code-base.	Doing	this	allowed

limited	testing	on	the	manufacturing	floor	to	help	drive	down	bugs	more.	The	team	also	decided

to	add	a	fourth	sprint	to	burn	down	the	remainder	of	bugs	that	prevented	the	project	from	being

accepted	and	replacing	the	older	code-base.	This	ensured	project	completion	at	the	cost	of	an

extra	seven	days	of	labor.	

Conclusions	

The	outcome	of	this	project	was	code	that	reduces	the	amount	of	time	the	developer	is

spending	on	bugs,	and	increases	the	amount	of	time	the	production	floor	is	able	to	use	the

application	without	a	line	down	bug.	This	improvement	was	measured	against	two	metrics.	The

first	metric	is	the	number	of	reported	bugs	per	week.	Previously	that	was	10	to	15	bugs	per	week,

counting	duplicates	as	the	issues	are	not	getting	fixed.	After	completing	the	project	the	number	of

reported	bugs	per	week	average	was	measured	at	3	per	week.	The	initial	expectation	of	the	first

new	release	having	new	bugs	was	correct.	The	plan	should	have	been	more	conservative	in	this

regard,	planning	for	the	necessity	to	burn	those	bugs	down.	At	the	end	of	that	two	week	period

after	completion,	we	are	only	seeing	3	bugs	reported	per	week.		



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 17

The	outcome	of	this	project	was	code	that	reduces	the	amount	of	time	the	developer	is

spending	on	bugs,	and	increases	the	amount	of	time	the	production	floor	is	able	to	use	the

application	without	a	line	down	bug.	This	improvement	was	measured	against	two	metrics.	The

first	metric	is	the	number	of	reported	bugs	per	week.	Previously	that	was	10	to	15	bugs	per	week,

counting	duplicates	as	the	issues	are	not	getting	fixed.	After	completing	the	project	the	number	of

reported	bugs	per	week	average	was	measured	at	3	per	week.	The	initial	expectation	of	the	first

new	release	having	new	bugs	was	correct.	The	plan	should	have	been	more	conservative	in	this

regard,	planning	for	the	necessity	to	burn	those	bugs	down.	At	the	end	of	that	two	week	period

after	completion,	we	are	only	seeing	3	bugs	reported	per	week.		

The	second	improvement	was	an	increased	speed	in	adding	new	products	to	the	test

environment.	This	improvement	allows	rapid	development	of	new	test	platforms,	without

touching	the	IDE	code	to	add	new	tests.	The	project	structure	has	created	a	blueprint	for	dealing

with	future	problems	that	come	up,	driving	the	program	to	become	even	more	maintainable,

reliable	and	extensible.	With	the	prior	application	it	took	over	a	month	to	add	a	new	product	and

due	to	the	fragile	nature	of	the	code-base	that	introduced	dozens	of	new	bugs	that	were	not	being

burned	down	fast	enough	during	bug	sprints.	Now	that	the	project	is	completed,	it	takes	less	than

a	week	to	add	a	new	product	to	the	code-base.

Project	Deliverables

Appendix	A	includes	the	chart	of	the	average	bugs	reported	per	week,	before	and	after

project	completion.	The	data	was	gathered	using	the	TRAC	software	the	company	uses	to	report

and	track	the	bugs	reported	at	the	company.	The	before	data	set	was	an	average	of	one	month

before,	the	after	data	set	is	an	average	of	one	month	after	project	completion.	Before	the	project

was	completed	there	were	8	bugs	reported	per	week	on	average.	(counting	duplicate	bugs)	After

the	project	that	number	is	down	to	3	per	week.

Appendix	B	is	a	chart	comparing	how	many	products	were	added	to	the	system	per	month

before	and	after	project	completion.	Before	the	project	was	completed	I	was	averaging	less	than	1

product	added	per	month	over	a	six	month	period.	Tracking	since	project	completion	(April	2017)

on	average,	I’ve	been	able	to	add	three	new	products	per	month.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 18

Appendix	B	is	a	chart	comparing	how	many	products	were	added	to	the	system	per	month

before	and	after	project	completion.	Before	the	project	was	completed	I	was	averaging	less	than	1

product	added	per	month	over	a	six	month	period.	Tracking	since	project	completion	(April	2017)

on	average,	I’ve	been	able	to	add	three	new	products	per	month.

Appendix	C	shows	what	the	Measure	Step	by	Step	looked	like	before	and	after.	Before	is

barely	visible	at	this	resolution	and	it	required	scrolling	horizontally	for	two	full	screens.	It	also

didn’t	meet	the	current	functional	requirements	and	for	this	reason	underwent	a	complete	rewrite.

This	require	converting	the	data	bundle	that	is	running	across	the	screen	and	being	unbundled

before	being	sent	into	the	next	sub	VI	about	½	through	the	VI.	This	bundle	of	data	was	converted

to	a	class	object,	that	only	retrieves	data	as	it	needs	it.	It	was	also	determined	a	lot	of	what	was

being	done	within	this	VI	was	redundant	and	was	being	done	either	earlier	or	later	on.	(the	left

side	of	the	VI)	The	work	done	on	the	right	was	determined	to	need	it’s	own	encapsulation,	and	a

sub	VI	was	created	to	do	that	work.	After	the	measurement	is	completed,	it	compares	the

measurement	to	the	expected	values,	and	writes	the	results	to	the	data-stream	class	object.

Appendix	D	is	a	comparison	between	the	old	front	panel	and	new	front	panel.	This	UI

redesign	was	completed	while	rewriting	the	front	panel	and	the	team	decided	to	make	the	UI

match	the	other	in-house	programs	which	gives	the	program	a	more	polished,	consistent	look.

Underneath	the	new	UI	has	the	JKI	event	driven	state	machine	that	is	more	responsive.	In	the

before	state,	several	of	the	state	buttons	are	grayed	out	as	they	are	unavailable	in	the	current	state.

This	includes	the	“bug”	and	“settings”	button.	They	were	only	available	during	one	specific	state,

of	the	program.	With	the	new	program	the	buttons	that	are	grayed	out	are	grayed	out	because	of

process	flow,	not	because	of	inability	to	be	driven.	You	can	change	the	settings	at	any	time,	and

file	a	bug	at	any	time.



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 19

References

LabVIEW	Advantage	(2016).	How	to	refactor	code	-	LabVIEW.	Retrieved	from	 https://

www.youtube.com/watch?v=nV32Hf1TM1c

LabVIEW	Advantage	(2016).	How	to	refactor	code	-	LabVIEW.	Retrieved	from	 https://

www.youtube.com/watch?v=nV32Hf1TM1c

National	Instruments.	(2011).	Inheriting	and	maintaining	labview	code.	Retrieved	from

ftp://ftp.ni.com/pub/branches/uk/devdays_2011/

Inheriting_and_Maintaining_LabVIEW_Code.pdf

ftp://ftp.ni.com/pub/branches/uk/devdays_2011/

Inheriting_and_Maintaining_LabVIEW_Code.pdf

ALE	System	Integration	(2008).	Refactoring	LabVIEW	code.	Retrieved	from

https://ieee.li/pdf/viewgraphs/refactoring_labview_code.pdfhttps://ieee.li/pdf/viewgraphs/refactoring_labview_code.pdf

Osherove,	Roy	(2009).	The	art	of	unit	testing.	Physical	copy

JKI	(2015).	Caraya	-	A	new	take	on	LabVIEW	Unit	Testing.	Retrieved	from		 http://

blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing

JKI	(2015).	Caraya	-	A	new	take	on	LabVIEW	Unit	Testing.	Retrieved	from		 http://

blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing

LabVIEW	Architects	Forum	(2015)	LAF	Q2	2015	–	Unit	Testing	with	the	JKI	VI	Tester	(Casey

Lamers)	Retreived	from

https://www.youtube.com/watch?v=AFNbdF7ZU6shttps://www.youtube.com/watch?v=AFNbdF7ZU6s

Maila,	Tomi	P.	(2007)	LabVIEW	Object	Oriented	Programming	Walkthrough.	Retrieved	from

https://www.youtube.com/watch?v=pomEr5vQpxM&t=424shttps://www.youtube.com/watch?v=pomEr5vQpxM&t=424s

JKI	(2008)	JKI	State	Machine	Basic	Introduction.	Retrieved	from

https://www.youtube.com/watch?v=XJFujhIuZdUhttps://www.youtube.com/watch?v=XJFujhIuZdU

https://www.youtube.com/watch?v=nV32Hf1TM1c
https://www.youtube.com/watch?v=nV32Hf1TM1c
https://www.youtube.com/watch?v=nV32Hf1TM1c
https://www.youtube.com/watch?v=nV32Hf1TM1c
ftp://ftp.ni.com/pub/branches/uk/devdays_2011/Inheriting_and_Maintaining_LabVIEW_Code.pdf
ftp://ftp.ni.com/pub/branches/uk/devdays_2011/Inheriting_and_Maintaining_LabVIEW_Code.pdf
ftp://ftp.ni.com/pub/branches/uk/devdays_2011/Inheriting_and_Maintaining_LabVIEW_Code.pdf
ftp://ftp.ni.com/pub/branches/uk/devdays_2011/Inheriting_and_Maintaining_LabVIEW_Code.pdf
https://ieee.li/pdf/viewgraphs/refactoring_labview_code.pdf
https://ieee.li/pdf/viewgraphs/refactoring_labview_code.pdf
http://blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing
http://blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing
http://blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing
http://blog.jki.net/community/caraya-a-new-take-on-labview-unit-testing
https://www.youtube.com/watch?v=AFNbdF7ZU6s
https://www.youtube.com/watch?v=AFNbdF7ZU6s
https://www.youtube.com/watch?v=pomEr5vQpxM&t=424s
https://www.youtube.com/watch?v=pomEr5vQpxM&t=424s
https://www.youtube.com/watch?v=XJFujhIuZdU
https://www.youtube.com/watch?v=XJFujhIuZdU


Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 20

Appendix	A

Average	rate	of	bugs	reported	per	week



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 21

A

pp

en

di

x

B

Av

er

ag

e	rate	of	products	added	per	month



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 22

Ap

pen

dix

C

Me

asu

re

Ste

p

by	Step	(VI)	before	and	after

Before:

After:



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 23



Rev	03/21/2018

MBUEL	CAPSTONE	LABVIEW	AUTOMATED	TEST	REFACTOR 24

Appendix	D

Front	Panel	Refactor	before	and	after

Before:

After:


